SRI KRISHNA INSTITUTE OF TECHNOLOGY,BANGALORE

COURSE PLAN
Academic Year 2019-20

Program:	BS
Semester:	4
Course Code:	18MAT41
Course Title:	COMPLE ANALYI,PROBABILITY\&TATITICAL
METHODS	

Academic Evaluation and Monitoring Cell

> No.29, Chimney Hills, Hesaragatta Road, Chikkabanavara Bangalore -560090, Karnataka, India Phone/ Fax: +91-08023721315/23721477 Web: www.skitorg.in

Table of Contents

A. COURSE INFORMATION 3

1. Course Overview. 3
2. Course Content 3
3. Course Material 4
4. Course Prerequisites 5
5. Content for Placement, Profession, HE and GATE 5
B. OBE PARAMETERS 5
6. Course Outcomes 5
7. Course Applications 6
8. Mapping And Justification. 7
9. Articulation Matrix 9
10. Curricular Gap and Content. 10
11. Content Beyond Syllabus 10
C. COURSE ASSESSMENT 10
12. Course Coverage 10
13. Continuous Internal Assessment (CIA) 10
D1. TEACHING PLAN - 1 11
Module - 1 11
Module - 2 13
E1. CIA EXAM - 1 13
a. Model Question Paper - 1 13
b. Assignment -1 14
D2. TEACHING PLAN - 2 16
Module - 3 16
Module - 4 17
E2. CIA EXAM - 2. 19
a. Model Question Paper - 2 19
b. Assignment - 2 19
D3. TEACHING PLAN - 3 20
Module - 5 20
E3. CIA EXAM - 3 22
a. Model Question Paper - 3 22
b. Assignment - 3 23
F. EXAM PREPARATION 24
14. University Model Question Paper. 24
15. SEE Important Questions 25
G. Content to Course Outcomes 27
16. TLPA Parameters 27
17. Concepts and Outcomes 28
Note : Remove "Table of Content" before including in CP BookEach Course Plan shall be printed and made into a book with cover pageBlooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

All rights reserved.

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	ME/CV/ECE/CSE/I SE/EEE
Year / Semester:	IV	Academic Year:	2019-20
Course Title:	Complex Analysis, Probability And Statistical Methods	Course Code:	18MAT41
Credit / L-T-P:	$3 / 2: 2: 0$	SEE Duration:	180 Minutes
Total Contact Hours:	50	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	$1 /$ Module
Course Plan Author:	PUJITHA G	Sign	Dt: 10-02-2020
Checked By:		Sign	Dt:

Note: Define CIA and SEE \% targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G .

Mod ule	Content	Teachi ng Hours	Identified Module Concepts	Blooms Learning Levels
1	Complex Variables: Review of a function of a complex variable, limits, continuity, differentiability. Analytic functions-CauchyRiemann equations in cartesian and polar forms. Properties and construction of analytic functions.	10	Analytic functions	L3
2	Conformal transformations, discussion of transformations $W=\left(z^{2}\right) \quad W=e^{z}$ and bilinear transformations-problems.Complex line integrals-Cauchy's theorem andCauchy's integral formula, Residues.poles.Cauchy's Residue theorem (without proof) and problems.	10	Integrals and complex analysis	L4
3	Probability Distributions: Random variables (discrete and continuous), probability mass/density functions. Binomial distribution, Poisson distribution. Exponential and normal distributions, problems.	10	Random variables	L3
4	curve fitting ,Statistical methods, lines of regression, correlation , rank correlation.	10	Data analyzing	L3
5	Joint probability distribution: Joint Probability distribution for two discrete random variables, expectation, covariance, correlation coefficient. Sampling Theory: Sampling, Sampling distributions, standard error, test of hypothesis for means and proportions, confidence limits for means, student's t-distribution, Chisquare distribution as a test of goodness of fit.	10	Discrete random variables. Sampling distribution in accepting or rejecting the hypothesis.	L3
-	Total	50	-	-

3. Course Material

Books \& other material as recommended by university (A, B) and additional resources used by course teacher (C).

All rights reserved

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; $15-30$ minutes
2. Design: Simulation and design tools used - software tools used ; Free / open source
3. Research: Recent developments on the concepts - publications in journals; conferences etc.

$\begin{gathered} \text { Modul } \\ \text { es } \end{gathered}$	Details	Chapters in book	Availability
A	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1	B.S.Grewal: Higher Engineering Mathematics, Khanna publishers, $43^{\text {rd }}$ Ed. 2015 .		In Dept
2	E.Kreyszig: Advanced Engineering Mathematics,John Wiley \& Sons, $10^{\text {th }}$ Ed. (Reprint),2016.		In Dept
B	Reference books (Title, Authors, Edition, Publisher, Year.)		
1	C Ray Wylie, Louis C Barrett: "Advanced Engineering Mathematics",6th Edition, 2.McGraw-Hill Book Co.,New york,1995.		Not Available
2	James Stewart:"Calculus- Early Transcendentals", Cengage Learning India Private Ltd. 2017.		Not Available
3	B.V.Ramana:"Higher Engineering Mathematics" $11^{\text {th }}$ Edition Tata McGrawHill,2010.		In Dept
4	Srimanta Pal \& Subobh C Bhunia: "Engineering Mathematics", Oxford UniversityPress, $3^{\text {rd }}$ Reprint, 2016.	-	Not Available
5	Gupta C B, Singh S R and Mukesh Kumar:"Engineering Mathematics for Semesterl and II, Mc-Graw Hill Education(India)Pvt.Ltd., 2015.		Not Available
D	Software Tools for Design	-	-
E	Recent Developments for Research	-	-
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	01. https:// youtu.be/fOGaD2p-x3c 02. https://youtu.be/AvFs2zi3450 03. https://youtu.be/pB41_cA8zck 04. https://youtu.be/IskNRQdSWXo 05. https://youtu.be/EVPb2GWb-Rc o6. https://youtu.be/5WCDuGkj_Fw 07. https:// youtu.be/XJYdcNiHHxo 08. https://youtu.be/6ZCW/dyrRRKw 09. https:// youtu.be/CFBYX-9ywlw		
2	1. https://nptel.ac.in/courses/111107056/		
3	1. https://nptel.ac.in/courses/111105041/ 2.https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text /105105045/lec7.pdf 3.https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text /103106112/lec5.pdf		
4	https://www.youtube.com/watch?v=AzroLr1XS5E		
	https://www.youtube.com/watch? v=0WejWgMiTGg		
5	https://www.youtube.com/watch? $\mathrm{l}=$ LSIgQHobj74		
	https:// wwww.youtube.com/watch?v=TvCzRW/hfUk		
G	Web links and Video Lectures:		
1			
2	VTU EDUSAT PROGRAMME - 20		

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B. 5 .
Students must have learnt the following Courses / Topics with described Content.

$\begin{array}{\|c\|} \hline \text { Mod } \\ \text { ules } \end{array}$	Course Code	Course Name	Topic / Description	Sem	Remarks	Blooms Level
1	18MAT41	Complex analysis,probab	Calculus of complex function	M3	Knowledge of analytic functions	L2

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry \& profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.
Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod ules	Topic / Description	Area	Remarks	Blooms Level
1	Calculus of complex function	HE		L
2	Conformal transformation\&complex integration	HE		L 4
3	probability	HE		L 6
4	Curve fitting\&staistical methods	HE	L	
5	Joint probability\&sampling theory	HE		L 4
-				

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Mod ules Course Code.\# Course Outcome At the end of the course, student should be able to... Teach. Hours Concept Instr Method Assessme nt Method Blooms' Level 1 18 MAT41 Apply the knowledge of complex analysis its properties and construction of analytical functions. 10 Analytic functions Lecture Assignme nt and slip test L3 2,4 18 MAT41 Analyze various transformations to convert one plane to another evaluate complex integral and finding the bet relation between the variables. 10 Integrals and complex analysis Lecture Assignme nt and slip test

All rights reserved.
3
18 MAT41

2. Course Applications

Write 1 or 2 applications per CO.
Students should be able to employ / apply the course learnings to ...

Mod ules	Application Area Compiled from Module Applications.	CO	Level
1	To study the nature of electromagnetic wave in conductors..	$\mathrm{co1}$	L 3
2	To study the nature of complex potential in field theory Curve fitting is the process of constructing a curve that has the best fit to a series of data points.	$\mathrm{co2}$	$\mathrm{~L} 3 \& \mathrm{~L} 4$
3	To analyze problems associated with optimization of digital circuits	$\mathrm{co3}$	L 3
4	To solve problems related to information and coding theory\&To smoothen and prediction of discrete data in digital computers \& cruise control system in motor vehicles.	$\mathrm{co4}$	L 3

3. Mapping And Justification

CO - PO Mapping with mapping Level along with justification for each CO-PO pair.
To attain competency required (as defined in POs) in a specified area and the knowledge \& ability required to accomplish it.

Mod ules	Mapping		Mapping Level	Justification for each CO-PO pair	$\begin{gathered} \mathrm{Lev} \\ \mathrm{el} \end{gathered}$
-	CO	PO	-	'Area': ‘Competency' and 'Knowledge' for specified 'Accomplishment’	
1	CO1	PO1	3	Apply the knowledge of Complex Variables in finding the solution to complex engineering problems.	L3
1	CO1	PO 2	3	Formulate engineering problems using first principles of Complex Variables.	L3
1	CO1	PO8	2	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	L3
1	CO1	PO 9	3	Function effectively as an individual in multidisciplinary settings using Complex Variables .	L3
1	CO1	PO10	3	Communicate effectively on complex engineering activities with the engineering community and with society at large such as being able to comprehend and write effective reports and design documentation make effective presentation and give and receive clear instructions.	L3
1	CO1	PO12	3	Recognize the need for life- long learning with practical applications in engineering field using Complex Variables .	L3
2,4	CO 2	PO1	3	Apply the knowledge of Statistical methods in finding the solution to complex engineering problems.	$\begin{gathered} \mathrm{L} 3 \& \\ \mathrm{~L} 4 \end{gathered}$
2,4	CO 2	PO 2	3	Formulate and review engineering problems using first principles of Statistical methods.	$\begin{gathered} \mathrm{L} 3 \& \\ \mathrm{~L} 4 \end{gathered}$
2,4	CO 2	PO 3	2	Develop and Design solutions for complex engineering problems using Statistical methods	$\begin{gathered} \mathrm{L} 3 \& \\ \mathrm{~L} 4 \end{gathered}$
2,4	CO 2	PO8	2	Apply ethical principles and commit to professional ethics and	

				responsibilities and norms of the engineering practice.	L4
2,4	CO 2	PO 9	3	Function effectively as an individual in multidisciplinary settings using Statistical methods.	$\begin{gathered} \mathrm{L} 3 \& \\ \mathrm{~L} 4 \end{gathered}$
2,4	CO 2	PO10	3	Communicate effectively on complex engineering activities with the engineering community and with society at large such as being able to comprehend and write effective reports and design documentation make effective presentation and give and receive clear instructions.	$\begin{gathered} \mathrm{L} 3 \& \\ \mathrm{~L} 4 \end{gathered}$
2,4	CO 2	PO12	3	Recognize the need for life- long learning with practical applications in engineering field using Statistical methods .	$\begin{gathered} \mathrm{L} 3 \& \\ \mathrm{~L} 4 \end{gathered}$
3	CO 3	PO1	3	Apply the knowledge of Probability Distributions in finding the solution to complex engineering problems.	L3
3	CO 3	PO 2	2	Formulate engineering problems using first principles of Probability Distributions.	L3
3	CO 3	PO8	3	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	L3
3	CO 3	POg	3	Function effectively as an individual in multidisciplinary settings using Probability Distributions.	L3
3	CO_{3}	PO10	3	Communicate effectively on complex engineering activities with the engineering community and with society at large such as being able to comprehend and write effective reports and design documentation make effective presentation and give and receive clear instructions.	L3
3	CO 3	PO12	3	Recognize the need for life- long learning with practical applications in engineering field using Probability Distributions.	L3
5	CO 4	PO1	3	Apply the knowledge of Sampling Theory in finding the solution to complex engineering problems.	L3
5	CO 4	PO 2	3	Formulate engineering problems using first principles of Sampling Theory	L3
5	CO4	PO8	3	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	L3
5	CO 4	PO9	2	Function effectively as an individual in multidisciplinary settings using Sampling Theory .	L3
5	CO 4	PO10	3	Communicate effectively on complex engineering activities with the engineering community and with society at large such as being able to comprehend and write effective reports and design documentation make effective presentation and give and receive clear instructions.	L3
5	CO 4	PO12	4	Recognize the need for life- long learning with practical applications in engineering field using Sampling Theory .	L3

4. Articulation Matrix

CO - PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes	Program Outcomes													-
Mod ules	CO.\#	At the end of the course student should be able to .	$\begin{gathered} \mathrm{PO} \\ 1 \end{gathered}$			$\begin{gathered} \mathrm{PO} \\ 4 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 6 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 7 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 8 \end{gathered}$	$\begin{array}{\|c\|c\|} \hline \mathrm{PO} & \mathrm{PO} \\ 9 & 10 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline \mathrm{PO} \\ 12 \end{array}$			$\begin{gathered} \text { Lev } \\ \text { el } \end{gathered}$
1	18MAT41.1	Apply the knowledge of complex analysis its properties and construction of analytical functions.								2.5	2.52.5		2.5			L3
2,4	18MAT41.2	Analyze various transformations to convert one plane to another evaluate complex integral and finding the bet relation between the variables.	2.5		2.5					2.5	2.52.5		2.5			$\begin{gathered} \text { L3\& } \\ \text { L4 } \end{gathered}$
3	18MAT41.3	Learn different probability measures , distribution function and its properties and also apply various inequalities in statistical analysis.									$2.52 .5$		2.5			L3

5. Curricular Gap and Content

Topics \& contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod ules	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping

6. Content Beyond Syllabus

Topics \& contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Mod ules	Gap Topic	Area	Actions Planned	Schedule Planned	Resources Person	PO Mapping

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod ules	Title	Teach. Hours	No. of question in Exam						CO	Levels
			CIA-1	CIA-2	CIA-3	Asg	Extra Asg	SEE		
1	Calculus of complex function	10	2	-	-			2	CO1	L3
2	Conformal transformation\&complex integration	10	2	-	-			2	CO 2	L4
3	probability	10	-	2	-			2	CO 3	L3
4	Curve fitting\&staistical methods	10	-	2	-			2	CO 2	L3
5	Joint probability\&sampling theory	10	-	-	4			2	CO 5	L3
-	Total	50	4	4	4			10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod ules	Weightage in Marks	CO	Levels	
1,2	ClA Exam -1	30	$\mathrm{CO} 2, \mathrm{CO} 3$,	$\mathrm{L}, \mathrm{L} 3$
3,4	CIA Exam -2	30	$\mathrm{CO}, \mathrm{CO} 4$	$\mathrm{~L} 3, \mathrm{~L} 3$
5	CIA Exam -3	30	CO 2	L 4
1,2	Assignment -1	10	$\mathrm{CO} 2, \mathrm{CO} 3$,	$\mathrm{L} 3, \mathrm{~L} 3$

COURSE PLAN - CAY 2019-20

D1. TEACHING PLAN - 1

Module - 1

Title:	Calculu of complex functions:	Appr Time:	12 Hrs
a	Course Outcomes	CO	Blooms
-	The student should be able to:	-	Level
1	Apply the knowledge of complex analysis its properties and construction of analytical functions	CO1	L3
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	Complex Variables: Review of a function of a complex variable, limits, continuity, differentiability. Analytic functions-Cauchy-Riemann equations in cartesian and polar forms. Properties and construction of analytic functions	C01	L3
2	Function of a complex variables	C01	L3
3	Analytic functions problems\& theorems	C01	L3
4	Cauchy-Riemann equations in cartesian form	C01	L3
5	Cauchy-Riemann equations in polar forms	C01	L3
6	Harmonic property	C01	L3
7	Cauchy' theorems	C01	L3
8	Consequence of cauchy's theorem	C01	L3
9	Construction of analytic function	C01	L3
10	Milne thomon method problems	C01	L3
c	Application area;		
1	To study the nature of electromagnetic wave in conductors..	co1	L3
d	REVIEW QUESTIONS:		
1	Derive the Cauchy Riemanns equation in the Cartesian form.	co1	L3
2	Derive Cauchy Riemann equations in Polar form. (OR) Derive the necessary conditions for $\mathrm{f}(\mathrm{z})=\mathrm{u}(\mathrm{r}, \theta)+\mathrm{iv}(\mathrm{r}, \theta)$ to be analytic in a regio	co1	L3
3	Show that Z^{n} is analytic . Hence find its derivative	co1	L3
4	If $w=z^{3}$ find $d w / d z$.	co1	L3

5	If $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ is analytic and hence find $\mathrm{f}(\mathrm{z})$ if $\mathrm{u}-\mathrm{v}=(\mathrm{x}-\mathrm{y})\left(x^{2}+4 x y+y^{2}\right)$.	co1	L3
6	Find the analytic function $\mathrm{u}+\mathrm{iv}$ where u is given to be $\mathrm{u}=\mathrm{e}^{\mathrm{x}}\left(\left(x^{2}-y^{2}\right)\right.$ cosy2xysiny)	CO1	L3
7	If $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ is analytic prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial x^{2}}\right)\|f(z)\|^{2}=4\left\|f^{I}(z)\right\|^{2}$	co1	L3
8	If $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ is analytic function, show that $\left[\frac{\partial}{\partial x}\|f(Z)\|\right]^{2}+\left[\frac{\partial}{\partial y}\|f(Z)\|\right]^{2}=\left\|f^{I}(Z)\right\|^{2}$.	co1	L3
9	Find the analytic function $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ given that $\left.\mathrm{u}=\mathrm{z}_{\mathrm{z}}\right)+\frac{x}{\left(x^{2}+y^{2}\right)}$.	co1	L3
10	If $f(z)=u(r, \theta)+i v(r, \theta)$ is an analytic function, show that u and v satisfy yhe equation $\frac{\partial^{2} \phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}}=0$	co1	L3
11	Find the analytic function $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ whose real part is $y+e^{x}$ cosy .	co1	L3
e	Experiences		

Module - 2

Title:	Conformal tranformation \& comple integration:	Appr Time:	7 Hrs
a	Course Outcomes	CO	Blooms
	The student should be able to:	-	Level
1	Analyze various transformations to convert one plane to another evaluate complex integral and finding the bet relation between the variables.	co2	L3 \& L4
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	Conformal transformation introduction	co2	L3 \& L4
2	Discussion of transformations: $\mathrm{W}=z^{\wedge}$ 2	co2	L3 \& L4
3	Discussion of transformations: $\mathrm{W}=\mathrm{e}^{\wedge} \mathrm{Z}$	co2	L3 \& L4
4	Discussion of transformations: $\mathrm{W}=\mathrm{Z}+1 / \mathrm{Z}$	co2	L3 \& L4
5	Bilinear transformation problems	co2	L3 \& L4
6	Complex integration introduction	co2	L3 \& L4
7	Line function integral of a complex	$\mathrm{co2}$	L3 \& L4
8	cauchy's theorem	co2	L3 \& L4
9	cauchy's integral formmula	co2	L3 \& L4
10	Baed on problems	co2	L3 \& L4
c	Application Areas	-	-
1	To study the nature of complex potential in field theory Curve fitting is the process of constructing a curve that has the best fit to a series of data points.	CO2	L3\&L4
d	Review Questions	-	-
-		-	-
1	Discussion of transformations: $\mathrm{W}=z^{\wedge}$ 2	$\mathrm{co2}$	L4
2	Discussion of transformations: $W=\mathrm{e}^{\wedge} \mathrm{Z}$	O2	L4
3	Discussion of transformations: $\mathrm{W}=2+1 / Z$	co2	L4
4	Find the bilinear transformation that maps the points $\mathrm{z}=-1, \mathrm{i}, 1$ on to the points w=1,i,-1 respectively.	co2	L3
5	Find the bilinear transformation that maps the points 1,i,-1 onto the points i, , , -1	co2	L3

All rights reserved.

	respectively		
6	Find the bilinear transformation that transforms the points $z 1=1, z 2=i, z 3=-1$ onto the points $W 1=2, W 2=i, W 3=-2$ find the fixed points of the transformation.	$\mathrm{co2}$	L 3
7	Line function, complex line integrals	$\mathrm{co2}$	L 3
8	cauchy's theorem	co 2	L 3
9	cauchy's integral formmula	$\mathrm{co2}$	L 3
10	Baed on problems	$\mathrm{co2}$	L 3
\mathbf{e}	Experiences	-	-
1			

E1. CIA EXAM - 1

a. Model Question Paper - 1

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

$|$| Model Assignment Questions | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Crs Code: | 18MAT41 | Sem: | 4 | Marks: | 5 | Time: |
| Course: | Complexanalysis, probability\&stastistialmetho
 ds | Module : 1, 2 | | | | |
| Note: Each student to answe5r 2-3 assignments. Each assignment carries equal mark. | | | | | | |
| SNo USN | Assignment Description | Marks | CO | Level | | |

1	Derive the Cauchy Riemanns equation in the Cartesian form.	5	CO1	L3
2	Derive Cauchy Riemann equations in Polar form. (OR) Derive the necessary conditions for $f(z)=u(r, \theta)+i v(r, \theta)$ to be analytic in a regio	5	CO1	L3
3	Show that Z^{n} is analytic . Hence find its derivative	5	CO1	L3
4	If $w=z^{3}$ find dw/dz.	5	CO1	L3
5	If $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ is analytic and hence find $\mathrm{f}(\mathrm{z})$ if $\mathrm{u}-\mathrm{v}=(\mathrm{x}-\mathrm{y})($ $\left.x^{2}+4 x y+y^{2}\right)$.	5	CO1	L3
6	Find the analytic function $\mathrm{u}+\mathrm{iv}$ where u is given to be $\mathrm{u}=\mathrm{e}^{\mathrm{x}}(($ $\left.\left.x^{2}-y^{2}\right) \cos y-2 x y \sin y\right)$	5	CO1	
7	If $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ is analytic prove that $\left.\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial x^{2}}\right)\left\|f(z)^{2}=4\right\| f^{I}(z)\right\|^{2}$	5	CO1	L3
8	If $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ is analytic function, show that $\left[\frac{\partial}{\partial x}\|f(Z)\|\right]^{2}+\left[\frac{\partial}{\partial y}\|f(Z)\|\right]^{2}=\left\|f^{I}(Z)\right\|^{2}$.	5	CO1	L3
9	Find the analytic function $f(z)=u+i v$ given that $u=i i)+$ $\frac{x}{\left(x^{2}+y^{2}\right)}$.	5	CO1	L3
10	If $f(z)=u(r, \theta)+i v(r, \theta)$ is an analytic function, show that u and v satisfy yhe equation $\frac{\partial^{2} \phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}}=0$	5	CO1	L3
11	Find the analytic function $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ whose real part is $y+e^{x} \cos y$.	5	CO1	L3
12	Discussion of transformations:W $=z^{\wedge} 2$	5	CO 2	L4
13	Discussion of transformations: $\mathrm{W}=\mathrm{e}^{\wedge} \mathrm{Z}$	5	CO 2	L4
14	Discussion of transformations: $W=Z+1 / Z$	5	CO 2	L4
15	Find the bilinear transformation that maps the points $z=-1, i, 1$ on to the points $W=1, i,-1$ respectively.	5	CO 2	L4
16	Find the bilinear transformation that maps the points $1, \mathrm{i},-1$ onto the points i,o,-1 respectively	5	CO 2	L4
17	Find the bilinear transformation that transforms the points $z 1=1, z 2=i, z 3=-1$ onto the points $w 1=2, w 2=i, w 3=-2$ find the fixed points of the transformation.	5	CO 2	L4
18	Line function, complex line integrals	5	CO 2	L4
19	cauchy's theorem	5	CO 2	L4
20	cauchy's integral formmula	5	CO 2	L4
21	Baed on problems	5	CO 2	L4
22	P.T $W=1+z / 1-z$ map the region $\|z\|$ less than are equal to 1 onto the half plane $R(U)$ greaterthan are equal to o being the region ugreater than are equal to 0	5	CO 2	L4
23	Find the invariant points of the following bilinear transformations $W=z-1-i / z+2$	5	CO 2	L4
24	Bilinear transformationw=3z-4/z-1	5	CO 2	L4
25	Obtain the image of the region bounded by the line $x=1, x=2, y=1, y=2$ under the tranformation $w=e^{\wedge} z$ and sketch the	5	CO 2	L4

All rights reserved.	region			

D2. TEACHING PLAN - 2

Module - 3

Title:	PROBABILITY DISTRIBUTIONS:	Appr Time:	12 Hrs
a	Course Outcomes	CO	Blooms
-	The student should be able to:	-	Level
1	Learn different probability measures, distribution function and its properties and also apply various inequalities in statistical analysis.	CO_{3}	
b	Course Schedule		
Class No	Portion covered per hour	-	-
1	Probability distributions: Introduction on probability some examples	CO_{3}	L3
2	Random variables(discrete and continuous)	CO_{3}	L3
3	probability mass/density function	CO_{3}	L3
4	Binomial distribution based on problems	CO_{3}	L3
5	poisson distribution based on problems	CO_{3}	L3
6	Exponential ditribution and problems normal	CO_{3}	L3
7	normal distribution\& problems.	CO_{3}	L3
8	More examples on dirtibutions	CO_{3}	L3
c	Application Areas	-	-
-		-	-
1	To analyze problems associated with optimization of digital circuits	co3	L3
d	Review Questions	-	-
-		-	-
1	Find the binomial probability distribution which has mean 2 and variance 4/3		
2	Fit a poiSSon distribution for the following data and calculate the theoretical frequency $\begin{array}{llllll} \mathrm{X}: 0 & 1 & 2 & 3 & 4 \\ \\ \mathrm{Y}: 122 & 60 & 15 & 2 & 1 \end{array}$		
3	The number of telephone lines busy at an instant of time is binomial variate with probability 0.1 that a line is busy. If 10 lines are chosen at random, what is the probability that i) No line is busy ii) At least 5 lines are busy iii) At most 3 lines are busy.	CO_{3}	L3
4	The probability that a man aged 60 will live up to 70 is 0.65 . Out of 10 men, now at the age of 60 ,find probability that 1)Atlest 7 will live up) 2) Exactly 9 will Live up to 7	CO_{3}	L3
5	The probability that a man aged 60 will live up to 70 is 0.65 . Out of 10 men, now at the age of 60 ,find probability that 1)Atlest 7 will live up) 2) Exactly 9 will Live up to 7	CO_{3}	L3
6	In sampling a large number of parts manufactured by a company , the mean number of defectives in a samples of 20 is 2 . Out of 1000 such	CO_{3}	L3

	samples, how many would be expected to contain atleast three defective parts		
7	Given that 2% of the fuses manufactured by a firm are defective ,find by using Poisson distribution ,the probability that a box containing 200 fuses has i)No defective fuses ii) 3 or more defective fuses iii)At least one defective fuse.	CO 3	L3
8	For the following normal distribution find c and also the mean and S.D of frequency distribution	CO 3	L3
9	In normal distribution 31% of the items are under 45 and 8% are over 64 . Find the mean and standard deviation given that $\mathrm{A}(0.5)-0.19$ And $\mathrm{A}(1.4)=0.42$	CO 3	L3
10	i) A die is thrown 8times. Find the probability that ' 3 ' falls ii) Exactly 2 times iii) At least once At the most 7times	CO 3	L3
11	In certain town the duration of shower has mean 5 minutes. What is the probability that shower will last for i) 10 minutes or more ii) less than 10 minutes iii) between 10 and 12 minutes	CO 3	L3
12	If x I a normal variate with mean 30 and S.D 5 find the probability that (1) 26 less than are equal to"" X '"Less than are equal to 40 (2) X greater than are equal to 45 .	CO 3	L3
e	Experiences	-	-
1			
2			

Module - 4

Title	Curve fitting \& statistical methods	Appr Time:	13 Hrs
\mathbf{a}	Course Outcomes	CO	Blooms
-	Student should be able to		LEVEL
1	Analyze various transformations to convert one plane to another evaluate Apply to construct numerical data and solving by least square method	$\mathrm{co2}$	L3
\mathbf{b}	Course Schedule		
Class No	Portion covered per hour	-	-
1	Correlation and rank correlation problems	$\mathrm{co2}$	L 3
2	More examples on rank correlation	$\mathrm{co2}$	L 3
3	Regression and Regression coefficients	$\mathrm{co2}$	L 3
4	lines of regression - problems	$\mathrm{co2}$	L 3
5	Regression line XON Y \&Y ON X problems	$\mathrm{co2}$	L 3
6	Fitting of curves introduction- Fitting equation of straight line.	$\mathrm{co2}$	L 3
7	Fitting equation of parabola.	$\mathrm{co2}$	L 3
8	Second degree parabola problems	$\mathrm{co2}$	L 3
9	Fitting equation of exponential curve problems	$\mathrm{co2}$	L 3
10	More examples		
		-	-
\mathbf{c}	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to ...		

1	To study the nature of complex potential in field theory Curve fitting is the process of constructing a curve that has the best fit to a series of data points.	CO2	L3
d	Review Questions	-	-
-			
1	Fit a curve of the form $\mathrm{y}=\mathrm{a} e^{b x}$ to the following data :	CO 2	L3
2	Fit a parabola by using least squares method to the following method to the following data $\begin{array}{lrrrrrrr} \mathrm{x}: & 1.0 & 1.5 & 2.0 & 2.5 & 3.0 & 3.5 & 4.0 \\ \mathrm{y}: & 1.1 & 1.3 & 1.6 & 2.0 & 2.7 & 3.4 & 4.1 \end{array}$	CO 2	L3
3	Fit a traight line $\mathrm{y}=\mathrm{ax}+\mathrm{b}$ for the following data x:1346891114 Y:12445789	CO 2	L3
4	Fit a straight line in the leat quare ence for the following data $\begin{aligned} & \mathrm{X}: 5070100120 \\ & \mathrm{Y}: 12152125 \end{aligned}$	CO 2	L3
5	Fit a second degree parabola $y=a x^{\wedge} 2+b x+c$ in the leat square sence for the following data $\begin{array}{lccccc} \mathrm{X}: 1 & 2 & 3 & 4 & 5 \\ \mathrm{Y}: 10 & 12 & 13 & 16 & 19 & \end{array}$	CO 2	L3
6	Fit a curve of the form $y=a e^{\wedge} b x$ for the data $\begin{array}{lcc} \mathrm{X}: 0 & 2 & 4 \\ \mathrm{Y}: 8.12 & 12 & 31.82 \end{array}$	CO 2	L3
7	Compute the coefficient of correlation and the equation of the lines of regression for the data $\begin{array}{lllllllll} \mathrm{X}: 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \mathrm{Y}: 9 & 8 & 10 & 12 & 11 & 13 & \\ 14 \end{array}$	CO 2	L3
8	Obtain the line of regresion andf hence find the coefficient of correlation for the data $\begin{array}{lllllll} \mathrm{X}: 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \mathrm{Y}: 9 & 8 & 10 & 12 & 11 & 13 & 14 \end{array}$	CO 2	L3
9	Find the correlation coefficient for the data $\begin{array}{llllllllll} \mathrm{A}: 92 & 89 & 87 & 86 & 83 & 77 & 71 & 63 & 53 & 50 \\ \mathrm{Y}: 86 & 83 & 91 & 77 & 68 & 85 & 52 & 82 & 37 & 57 \end{array}$	CO 2	L3
10	Compute the rank correlation coefficient for the followingdata $\begin{array}{llllllllll} \mathrm{x}: 68 & 64 & 75 & 50 & 64 & 80 & 75 & 40 & 55 & 64 \\ \mathrm{y}: 62 & 58 & 68 & 45 & 81 & 60 & 68 & 48 & 50 & 70 \end{array}$	CO 2	L3

All rights reserved.

	Experiences		
\mathbf{e}		-	-
1			

E2. CIA EXAM - 2
a. Model Question Paper - 2
Crs Code:18MAT41 Sem: IV \quad Marks: 30 |Time: 75 minutes

Course: Complexanalysis,probability\&stastistialmethods

-	-	Note: Answer all questions, each carry equal marks. Module : 3, 4	Marks	CO	Level
1	a	Find the binomial probability distribution which has mean 2 and variance $4 / 3$	5	CO_{3}	L3
	b	Fit a poion distribution for the following data and calculate the theoretical frequency $\begin{array}{llllll} \mathrm{X}: 0 & 1 & 2 & 3 & 4 \\ \mathrm{Y}: 122 & 60 & 15 & 2 & 1 \end{array}$	5	CO 3	L3
	C	The number of telephone lines busy at an instant of time is binomial variate with probability 0.1 that a line is busy. If 10 lines are chosen at random, what is the probability that i) No line is busy ii) At least 5 lines are busy iii) At most 3 lines are busy.			L3
			5	CO_{3}	L3
		OR			
2	a	Given that 2\% of the fuses manufactured by a firm are defective ,find by using Poisson distribution ,the probability that a box containing 200 fuses has i)No defective fuses ii) 3 or more defective fuses iii)At least one defective fuse.	5	CO_{3}	L3
	b	Obtain the mean and S.D of the normal distribution.	5	CO_{3}	L3
	c	In a normal ditribution 31% of the itemes are under 45 and 8% of the item are over 64.find the mean and S.D of the distributions	5	CO_{3}	L3
3	a	Fit a parabola by using least squares method to the following method to the following data : $\begin{array}{llllllll} \mathrm{x}: & 1.0 & 1.5 & 2.0 & 2.5 & 3.0 & 3.5 & 4.0 \\ \mathrm{y}: & 1.1 & 1.3 & 1.6 & 2.0 & 2.7 & 3.4 & 4.1 \end{array}$	5	CO 2	L3
	b	Fit a traight line $\mathrm{y}=\mathrm{ax}+\mathrm{b}$ for the following data $\mathrm{x}: 1346891114$ Y:12445789	5	CO 2	L3
	c	Fit a curve of the form $y=a e^{\wedge} b x$ for the data $\begin{array}{lccc}\mathrm{X}: & 0 & 2 & 4 \\ \mathrm{Y}: 8 & 12 & 12 & 31.82\end{array}$ Y:8.12 1231.82	5	CO 2	L3
		OR			
4	a	Find the correlation coefficient for the data A:92 $8987 \quad 8683 \quad 77 \begin{array}{llllll}71 & 63 & 53 & 50\end{array}$ Y:86 $83 \begin{array}{lllllllll}91 & 77 & 68 & 85 & 52 & 82 & 37 & 57\end{array}$	CO2	L3	L3

b. Assignment - 2

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions											
Crs Code	18MAT41 Sem:		IV	Marks:		10	Time:				
Course:	Complexanalysis,probability\&stastistialmetho ds					Module : 3.4					
Note: Each student to answer 2-3 assignments. Each assignment carries equal mark											
SNo	USN	Assignment Description							Marks	CO	Level
${ }^{1}$		The pdf of a variate x is given by the following table:							5	CO 3	
		X 0 1 2 3 $P(x)$ k $3 k$ $5 k$ $7 k$ For what value of k this represents a valid probability distribution?									
2		Fit a poiSSon distribution for the following data and calculate the theoretical frequency$\begin{array}{llllll} \mathrm{X}: 0 & 1 & 2 & 3 & 4 \\ \\ \mathrm{Y}: 122 & 60 & 15 & 2 & 1 \\ \hline \end{array}$							5	CO_{3}	L3
3		When a coin is tossed 4 time find the probability of gettinh 1) exactly one head 2)atmot 3 head 3) at mot 2 heads							5	CO_{3}	L3
4		The number of telephone lines busy at an instant of time is binomial variate with probability 0.1 that a line is busy. If 10 lines are chosen at random, what is the probability that i) No line is busy ii) At least 5 lines are busy iii) At most 3 lines are busy.							5	CO_{3}	L3
5		Given that 2% of the fuses manufactured by a firm are defective, find by using Poisson distribution ,the probability that a box containing 200 fuses has i)No defective fuses ii) 3 or more defective fuses iii)At least one defective fuse.							5	CO 3	L3
6		The probability that a man aged 60 will live up to 70 is 0.65 . Out of 10 men, now at the age of 60 ,find probability that 1)Atlest 7 will live up) 2)Exactly 9 will live up to 7							CO 3	L3	L3
7		In sampling a large number of parts manufactured by a company, the mean number of defectives in a samples of 20 is 2 . Out of 1000 such samples, how many would be expected to contain atleast three defective parts							CO 3	L3	L3
8		5In normal distribution 31\% of the items are under 45 and							5	CO3	L3

All rights reserved.				
	8% are over 64 .Find the mean and standard deviation given that $\mathrm{A}(0.5)-0.19 \mathrm{~A}$ nd $\mathrm{A}(1.4)=0.42$			
9	1. A die is thrown 8times. Find the probability that ' 3 ' falls 2. Exactly 2 times 3. At least once At the most 7times	5	CO 3	L3
10	In certain town the duration of shower has mean 5 minutes. What is the probability that shower will last for i) 10 minutes or more ii) less than 10 minutes iii) between 10 and 12 minutes	5	CO 3	L3
11	The probability that a pen manufactured by a company will be defective is 0.1 . if 12 such pens are selected, find the probability that i) exactly 2 will be defective ii) at least 2 will be defective iii) none will be defective.	5	CO 3	L3
12	In a normal ditribution 31% of the itemes are under 45 and 8% of the item are over 64.find the mean and S.D of the distributions	5	co3	L3
13	If \times I a normal variate with mean 30 and S.D 5 find the probability that (1) 26 less than are equal to"" X'"Less than are equal to40 (2) X greater than are equal to 45 .	5	co3	L3

D3. TEACHING PLAN - 3

Module - 5

Title:	Joint probability distribution \& sampling theory	Appr Time:	10 Hrs
a	Course Outcomes	CO	Blooms
-	The student should be able to:	-	Level
1	To solve problems related to information and coding theory\&To smoothen and prediction of discrete data in digital computers \& cruise control system in motor vehicles.	CO4	L3
			L3
b	Course Schedule	-	-
$\begin{aligned} & \text { Class } \\ & \text { No } \end{aligned}$	Portion covered per hour	-	-
1	Introduction on joint probability distribution	CO4	L3
2	joint probability distribution for two discrete random variables	co4	L3
3	Problems based on expectations	CO4	L3
4	Problems on co variance	CO4	L3
5	Sampling theory: Introduction to sampling distributions,	CO4	L3
6	standard error,,test of hypothesis for means	CO4	L3
7	Type 1\&Type 2 errors	CO4	L3
8	Confidence limits for means students's t-distribution	CO4	L3
9	Chi-square distribution as a test of goodness of fit	CO4	L3
10	More examples on sampling theory	co4	L3
c	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-

E3. CIA EXAM - 3

a. Model Question Paper - 3

All rights reserved.

b. Assignment - 3

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions						
Crs Code:	18 mat41 Sem:	IV	Marks:	10	Time:	$90-120$ minutes
Course:	Complexanalysis, probability\&stastistialmetho ds	Module :5				

Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.

SNo	USN	Assignment Description	Marks	CO	Level
1		If the mean of an infinite population is 575 with standard deviation8.3,how large a sample must be used in order that there be one chance in 100 that the mean of the sample is less than 572 ?	5	CO 4	L3
2		Find the probability that in 100 tosses of a fair coin between 45% and 55% of the outcomes are heads	5	CO 4	L3
3		Out of 1000 samples of 200 children each in how many would you expect to find that 1)iess than 40% are boys, 2)between 40% and 60% are boys,3) 55% or more are girls	5	CO 4	L3
4		A random sample of 400 items chosen from an infinite population is found to have a mean of 82 and a standard deviation of 18 .find the 95% confidence limits for the mean of the population from which the sample is drawn	5	CO 4	L3
5		A biased coin is tossed 500 times and head turns up 120 times .find the 95% confidence limits for the proportion of heads turning up in infinitely many tosses	5	CO 4	L3
6		The S.D of the life-times of television tubes manufactured by a company is estimated as 100 hours. Find how large a sample must be taken in order to be 99% confident that the error in the estimated mean life-time will not exceed 20 hours	5	CO 4	L3
7		The S.D of the life-times of television tubes manufactured by a company is estimated as 100 hours. Find how large a sample must be taken in order to be 99% confident that the error in the estimated mean life-time will not exceed 20 hours	5	CO 4	L3
8		Find the students 't' for the following values in a sample of	5	CO 4	L3

All rights reserved.

F. EXAM PREPARATION

1. University Model Question Paper

2. SEE Important Questions

All rights reserved.					
	e	Fit a second degree parabola $y=a x^{\wedge} 2+b x+c$ in the leat square sence for the following data $\begin{array}{lcccc} \mathrm{X}: 1 & 2 & 3 & 4 & 5 \\ \mathrm{Y}: 10 & 12 & 13 & 16 & 19 \end{array}$		CO 2	2009
	f	Fit a curve of the form $\mathrm{y}=\mathrm{a} \mathrm{e}^{\wedge} \mathrm{bx}$ for the data $\begin{array}{lcc} \mathrm{X}: 0 & 2 & 4 \\ \mathrm{Y}: 8.12 & 12 & 31.82 \end{array}$	5	CO 2	2010
	g	Compute the coefficient of correlation and the equation of the lines of regression for the data $\begin{array}{llllllll} \mathrm{X}: 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \mathrm{Y}: 9 & 8 & 10 & 12 & 11 & 13 & \\ 14 \end{array}$	5	CO 2	2010
	h	Obtain the line of regresion andf hence find the coefficient of correlation for the data $\begin{array}{lllllll} \mathrm{X}: 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \mathrm{Y}: 9 & 8 & 10 & 12 & 11 & 13 & 14 \\ \hline \end{array}$	5	CO 2	2010
	i	Find the correlation coefficient for the data $\begin{array}{llllllllll} \mathrm{A}: 92 & 89 & 87 & 86 & 83 & 77 & 71 & 63 & 53 & 50 \\ \mathrm{Y}: 86 & 83 & 91 & 77 & 68 & 85 & 52 & 82 & 37 & 57 \end{array}$	5	CO 2	2013
	j	Compute the rank correlation coefficient for the followingdata	5	CO 2	2005
5 a	a	If the mean of an infinite population is 575 with standard deviation8.3, how large a sample must be used in order that there be one chance in 100 that the mean of the sample is less than 572 ?	5	CO 4	2016
	b	Find the probability that in 100 tosses of a fair coin between 45% and 55% of the outcomes are heads	5	CO 4	2015
	C	Out of 1000 samples of 200 children each in how many would you expect to find that 5 1)iess than 40% are boys,2)between 40% and 60% are boys, 3) 55% or more are girls	5	CO 4	2016
	d	A random sample of 400 items chosen from an infinite population is found to have a mean of 82 and a standard deviation of 18 .find the 95% confidence limits for the mean of the population from which the sample is drawn	5	CO 4	2009
	e	The mean and standard deviation of marks scored by a sample of 100 students are 67.45 and 2.92 find 1$) 95 \% 2) 99 \%$ confidence intervals for estimating the mean marks of the student population	5	CO 4	2008
	f	A biased coin is tossed 500 times and head turns up 120 times .find the 95% confidence limits for the proportion of heads turning up in infinitely many tosses	5	CO4	2012
	g	A biased coin is tossed 500 times and head turns up 120 times .find the 95% confidence limits for the proportion of heads turning up in infinitely many tosses	5	CO 4	2015
	h	A coin was tossed 400 times and the head turned up 216 times test the hypothesis that 5 the coin is unbiased at 5% level of significance./		CO 4	2018
	i	Find how many heads in 64 tosses of a coin will ensure its fairness at 0.05 level of significance.	5	CO 4	2017
	j	F or a random sample of 16 values with mean 41.5 and the sum of the squares of the deviations from the mean equal to 135 and drawn from a normal population,find the 95% confidence limits and the confidence interval,for the mean of the mean of the population.	5	CO 4	2015
	k	Find the students ' t ' for the following values in a sample of eight:-4,-2,-5 $2,0,2,2,3,3$, taking the mean of the population to be zero		CO 4	2005

All rights reserved.

Course Outcome Computation

Academic Year:
Odd / Even semester

INTERNAL TEST	T1						T2						T3			
Course Outcome	CO1		CO 2		CO_{3}		CO 4		CO 5		CO6		$\mathrm{CO7}$		CO8	
QUESTION NO	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV
MAX MARKS																
USN-1																
USN-2																
USN-3																
USN-4																
USN-5																
USN-6																
Average CO Attainment																

LV Threshold : 3:>60\%, 2:>=50\% and <=60\%, 1: <=49\%
CO1 Computation : $(2+2+2+3) / 4=10 / 4=2.5$

PO Computation

